国产精品内射久久久久欢欢_久久综合久久自在自线精品自_热re99久久精品国产99热_久久久亚洲欧洲日产国码是AV

歡迎光臨上海蔚雨科技有限公司網站!
銷售咨詢熱線:
18817590876
您的位置: 網站首頁 > 技術文章 > 利用環境eDNA檢測河流系統中的淡水蚌類

利用環境eDNA檢測河流系統中的淡水蚌類

發布日期: 2022-09-14
瀏覽人氣: 3254

 

Detection of freshwater mussels (Unionidae) using environmental DNA in riverine systems


Abstract


Environmental DNA (eDNA) methods are being developed for use in conservation biology to improve upon conventional species survey techniques. Validation of eDNA methods in different environmental contexts is required if they are to be widely adopted. One potential application of eDNA methods is for the detection of freshwater mussels (Bivalvia: Unionidae), which are among the most imperiled species in North America. Conventional unionid survey methods are highly invasive and can be difficult to conduct due to issues with morphological identification and their cryptic use of habitat. eDNA methods can potentially provide a non-invasive, extremely specific, and highly sensitive alternative. Here, we examine the effectiveness of eDNA methods at detecting an imperiled unionid, the wavy-rayed lampmussel (Lampsilis fasciola), in lotic systems with moderate discharge. We developed a novel qPCR assay for the detection of L. fasciola eDNA, which included a custom internal positive control to check for PCR inhibition. We used different experimental densities of caged L. fasciola specimens as a point source of eDNA within two rivers of the Grand River watershed in Southern Ontario. Sampling occurred at set distances downstream of the cage using purpose-built sampling equipment. Detection was obtained at the cage (i.e., point of eDNA shedding) but not downstream at distances ≥10 m during stream discharges of approximately 1,632–2,332 L/s. The results indicate that eDNA is diluted rapidly in rivers with moderate discharge and that high-resolution spatial sampling efforts may be necessary to obtain meaningful eDNA-based distribution data of unionids, and other sessile organisms, present at low density in lotic systems.

 

1 INTRODUCTION

North America has the highest level of freshwater mussel (Unionidae) diversity in the world, with 297 native species (Williams, Warren, Cummings, Harris, & Neves, 1993). In addition to having high species diversity, unionids have one of the highest rates of imperilment for organisms in North America, with an estimated 29 species falling to extinction in the last century (Haag & Williams, 2014). Canada is home to 55 species of unionids, 41 of which are found in Ontario (Galbraith, Zanatta, & Wilson, 2015). Of these, 15 are imperiled to some degree. The severe decline of unionid populations is concerning as they contribute to a myriad of ecological processes. Unionids influence bottom-up trophic effects, increase nutrient flux within ecosystems, stabilize substrate, and improve water quality (Allen et al., 2012; Haag & Williams, 2014; Howard & Cuffey, 2006). This general decline may be due to a variety of factors. Anthropogenic effects impact unionids in several ways, including but not limited to: wastewater effluents, siltation, stream impoundment, chemical pollution, agricultural runoff, and the introduction of invasive bivalves (Bogan, 1993; Bringolf et al., 2007; Gillis et al., 2017; Prosser, Rochfort, Mcinnis, Exall, & Gillis, 2017). In particular, the introduction of the highly invasive zebra mussel (Dreissena polymorpha, Pallas 1771) to North America has had significant detrimental effects on unionid populations through fouling and disruption of mussel beds (Bossenbroek et al., 2018; Haag, Berg, Garton, & Farris, 1993).

Another contributing factor impacting the imperilment of unionids is the sensitivity of early life stages to environmental stressors (Galbraith et al., 2015). Unionids release their young as glochidia, which parasitize the gills of fish or amphibians in order to develop into juvenile mussels. Consequently, this relationship makes unionids indirectly sensitive to negative effects on host organisms, which are thought to contribute to lower rates of glochidia recruitment, and in turn higher mortality during early life stages (Bringolf et al., 2007).

Surveys must be conducted to better understand how unionid populations are currently distributed; however, they can be difficult to conduct and require significant expertise (Currier et al., 2018; Mackie, Morris, & Ming, 2008). Unionids are difficult to find in aquatic habitats due to the way they burrow into the benthic substrate, leaving only a portion of their exterior visible. This is further complicated by factors such as water depth and turbidity, often causing visibility of the benthic zone to be non-existent (Mackie et al., 2008; Sansom & Sassoubre, 2017). Traditional surveys attempt to quantitatively identify mussels via random quadrat sampling (RQS), a technique that involves surveying 1 m2 sections of substrate and counting the number and abundance of species (Mackie et al., 2008). RQS is not completely effective as it can overlook species present at low density, cause harassment to organisms, and can be very costly to conduct over large, or difficult to survey, areas (Sansom & Sassoubre, 2017). Qualitative surveys, such as timed searches, can be easier to conduct than RQS but have inherent disadvantages for finding cryptic species (Obermeyer, 1998). Alternative survey methods such as adaptive cluster sampling have been proposed for detecting unionids at low density; however, this method can become inefficient when a large search area is required and sample size increases (Smith, Villella, & Lemarié, 2003). Novel survey methods are needed to fully assess unionid populations as current methods are limiting in respect to species occurrence, density estimates, and upon the number of qualified personnel that can conduct them.

Environmental DNA (eDNA) analysis is a rapidly developing environmental survey technique which has the potential to improve many aspects of aquatic species sampling (Goldberg, Strickler, & Pilliod, 2015). eDNA methods have been proven in multiple contexts to be more sensitive, less costly, and less disturbing to the environment than conventional species detection techniques (Goldberg, Strickler, & Fremier, 2018; Hunter et al., 2018; Pilliod, Goldberg, Arkle, Waits, & Richardson, 2013; Simmons, Tucker, Chadderton, Jerde, & Mahon, 2016; Wilcox et al., 2013). However, there are a number of environmental and methodological variables which may injuriously affect the results of any eDNA study if not properly accounted for (Barnes et al., 2014; Jane et al., 2015; Wilcox et al., 2016). One variable of major concern is the presence of PCR inhibitors that prevent DNA amplification and mask eDNA presence (both in qPCR and next-generation sequencing), leading to false-negative results (McKee, Spear, & Pierson, 2015; Wilcox et al., 2018). Another example is the effect of water flow on eDNA detection probability (Deiner & Altermatt, 2014; Jane et al., 2015; Wilcox et al., 2016). Our understanding of how to navigate environmental variables to avoid confounding influences, and to maximize eDNA detection probability, should eventually culminate in a set of eDNA standards for different types of biological systems, pushing eDNA methods toward the forefront of conservation science.

There exists a potential for eDNA methods to be implemented for unionid surveys in conjunction with recovery efforts for imperiled species (e.g., relocation or reintroduction; Fisheries and Oceans Canada, 2018). One such imperiled species is the wavy-rayed lampmussel (Lampsilis fasciola, Rafinesque 1820) classified as “special concern" in 2010 (Fisheries and Oceans Canada, 2018). L. fasciola populations in Canada are limited to four river systems and one delta in southern Ontario. The purpose of this study was to examine eDNA detection rate at set sampling distances, under measured stream discharge, downstream of caged L. fasciola specimens placed in virgin territory, while also controlling for PCR inhibition during analysis. Our results will inform improvements to future eDNA surveys.

請聯系上海蔚雨科技獲取詳細信息

分享到:
国产精品内射久久久久欢欢_久久综合久久自在自线精品自_热re99久久精品国产99热_久久久亚洲欧洲日产国码是AV
<rt id="cqc6i"></rt>
<button id="cqc6i"><input id="cqc6i"></input></button>
  • <li id="cqc6i"><dl id="cqc6i"></dl></li> <center id="cqc6i"><tr id="cqc6i"></tr></center>
    <li id="cqc6i"></li>
    <rt id="cqc6i"><acronym id="cqc6i"></acronym></rt>
  • 国产一区二区久久| 成人av在线观| 久久综合九色欧美综合狠狠| 717成人午夜免费福利电影| 色8久久精品久久久久久蜜| 成人av电影观看| 欧美电影一区二区三区| 欧美日高清视频| 精品三级av在线| 日本一区二区免费在线观看视频 | 粗大黑人巨茎大战欧美成人| 成人网在线播放| 日韩欧美国产1| 日本一区二区三区在线观看| 蜜臀av性久久久久蜜臀aⅴ流畅 | 91精品久久久久久久91蜜桃 | 成人性生交大合| 精品成人免费观看| 欧美韩国日本不卡| 亚洲免费视频中文字幕| 天天色综合成人网| 狠狠色狠狠色合久久伊人| 成人黄色大片在线观看| 精品免费一区二区三区| 日韩国产在线观看| 粉嫩欧美一区二区三区高清影视| 91国偷自产一区二区开放时间 | 91免费看片在线观看| 欧美在线观看一区二区| 91精品麻豆日日躁夜夜躁| 亚洲综合在线观看视频| 亚洲网友自拍偷拍| 国产精品一卡二| 欧美色偷偷大香| 国产女人18水真多18精品一级做| 精品一区二区免费| 在线观看日产精品| 亚洲欧美二区三区| 99久久免费视频.com| 欧美一区二区三级| 最新欧美精品一区二区三区| 美女在线视频一区| 3d动漫精品啪啪1区2区免费| 午夜精品久久久久久久久| 欧美日韩免费一区二区三区视频| 亚洲午夜三级在线| 欧美色综合网站| 中文字幕av在线一区二区三区| 国内精品免费在线观看| 精品国产一区二区三区久久久蜜月 | 欧美日韩一级二级| 亚洲成在人线免费| 成人高清视频在线| 欧美激情一区二区三区四区| 国产不卡视频一区二区三区| 日本一区二区三区dvd视频在线| 成人一级片网址| 亚洲欧洲日产国码二区| 91最新地址在线播放| 一区二区三区四区激情| 欧美日韩国产高清一区二区三区| 亚洲一区二区三区在线播放| 欧美人牲a欧美精品| 美腿丝袜亚洲一区| 久久精品人人做人人综合| 日本欧美韩国一区三区| 日韩欧美资源站| 亚洲成人动漫精品| 91精品国产欧美一区二区| 久久狠狠亚洲综合| 欧美精品一级二级三级| 日本成人在线网站| 久久精品一区四区| 99视频精品全部免费在线| 国产欧美日韩激情| 99国产精品国产精品毛片| 夜夜亚洲天天久久| 欧美一级欧美三级| 国产一区二区三区香蕉| 亚洲欧美在线另类| 欧美日韩精品欧美日韩精品| 狠狠色丁香婷婷综合久久片| 成人欧美一区二区三区小说| 欧美日韩一级黄| 国产成人午夜99999| 久久久亚洲高清| 国产一区二区美女诱惑| 亚洲人吸女人奶水| 日韩一区二区三区高清免费看看 | 精品视频一区三区九区| 美女一区二区在线观看| 国产精品情趣视频| 成人免费福利片| 亚洲激情在线激情| 色猫猫国产区一区二在线视频| 丝袜美腿一区二区三区| 欧美精品第1页| 国产成人自拍网| 亚洲综合免费观看高清完整版 | 日本中文一区二区三区| 日本一区二区动态图| 欧美日韩色一区| 福利一区福利二区| 石原莉奈一区二区三区在线观看| 国产日韩欧美电影| 欧美日韩国产小视频| 韩国v欧美v日本v亚洲v| 一区二区三区久久| 国产偷国产偷亚洲高清人白洁| 欧美日韩一区视频| 成人国产一区二区三区精品| 青青青伊人色综合久久| 欧美成人一区二区三区在线观看| 不卡大黄网站免费看| 麻豆成人久久精品二区三区红| 亚洲欧洲一区二区三区| 日韩区在线观看| 91福利精品视频| 国产大陆a不卡| 日韩电影网1区2区| 尤物视频一区二区| 日本一区二区免费在线观看视频| 91精品国产综合久久精品麻豆| 91在线视频播放地址| 国产又粗又猛又爽又黄91精品| 亚洲第一会所有码转帖| 亚洲欧美在线另类| 久久九九99视频| 日韩精品综合一本久道在线视频| 欧美偷拍一区二区| 99re热这里只有精品视频| 国产福利一区二区三区视频在线 | 黑人巨大精品欧美一区| 亚洲高清免费视频| 中文字幕一区二区三区蜜月| 精品国产免费一区二区三区四区| 欧美日韩免费一区二区三区视频| 99精品在线观看视频| 国产成人亚洲综合a∨猫咪| 久久国产精品99精品国产| 午夜视频一区在线观看| 一区二区三区四区视频精品免费 | 午夜久久久久久久久| 亚洲精品视频自拍| 亚洲国产精品t66y| 久久亚洲精品小早川怜子| 欧美日韩国产免费| 欧美在线播放高清精品| 色偷偷成人一区二区三区91| 日韩影视精彩在线| 亚洲综合自拍偷拍| 亚洲免费观看在线视频| 日本一区二区三级电影在线观看| 26uuu国产一区二区三区| 日韩一区二区三区精品视频| 欧美高清dvd| 欧美精选午夜久久久乱码6080| 欧美性生交片4| 欧美亚洲国产一区二区三区va| 色猫猫国产区一区二在线视频| 色综合网色综合| 精品在线免费视频| 麻豆精品精品国产自在97香蕉| 日韩在线卡一卡二| 日韩精品一二三| 天使萌一区二区三区免费观看| 亚洲国产视频网站| 亚洲大片在线观看| 五月婷婷综合在线| 视频在线观看91| 视频一区二区中文字幕| 日本中文一区二区三区| 免费黄网站欧美| 麻豆一区二区在线| 精品一区二区三区免费观看| 韩国视频一区二区| 国产成人亚洲综合a∨婷婷图片| 粉嫩嫩av羞羞动漫久久久| 成人av网址在线观看| 99久久伊人网影院| 日本韩国一区二区三区视频| 欧美在线看片a免费观看| 欧美日韩情趣电影| 日韩一区二区在线播放| 精品国产伦一区二区三区观看体验| www国产精品av| 中文字幕精品—区二区四季| 亚洲欧洲日产国码二区| 一区二区三区日韩| 日韩国产欧美在线视频| 久久91精品久久久久久秒播| 国产成人午夜精品5599| 99国产精品一区| 欧美视频一区二| 精品国产不卡一区二区三区| 国产日韩欧美a| 亚洲曰韩产成在线| 免费在线成人网| 国产盗摄视频一区二区三区| 色婷婷一区二区|